Professor Shihe YANG (PhD, Rice, 1988)

Tel: (852) 2358-7362; Fax: (852) 2358-1594

Research interests

Physical and Materials Chemistry; Energy Generation and Storage; Nano Science and Technology.   


(1)    Low-dimensional ordered nanostructures. A number of chemical and physical approaches are being developed in our laboratory to create low-dimensional ordered nanostructures with controlled sizes, shapes, and surface functionalities. By using microscopic and spectroscopic techniques, we seek to build mechanistic pictures underpinning the growth processes of the nanostructures and explore and expand their utility in optoelectronics and biomedicine. 


¤å¦r¤è¶ô: ZnO Nanowires Arrays


¡§From Nanorods to Atomically Thin Wires of Anatase TiO2: Nonhydrolytic Synthesis and Characterizations¡¨, Chem. Eur. J. 16, 4381-4393 (2010). 

¡§In-Situ Fabrication of Inorganic Nanowire Arrays Grown from and Aligned on Metal Substrates¡¨, Accounts of Chemical Research 42, 1617-1627 (2009). 

¡§Synthesis of Angstrom-Scale Anatase Titania Atomic Wires¡¨, ACS Nano 3, 1025 (2009).

¡§Controlled Synthesis and Upconverted Avalanche Luminescence of Cerium(III) and Neodymium(III) Orthovanadate Nanocrystals with High Uniformity of Size and Shape¡¨, J. Am. Chem. Soc. 130, 2032 (2008). 

¡§Surface Functionalization of ZnO Nanotetrapods with Photoactive and Electroactive Organic Monolayers¡¨Langmuir 24, 5052 (2008).     

¡§Sensitive Dopamine Recognition by Boronic Acid Functionalized Multi-Walled Carbon Nanotubes¡¨, Chem. Commun. (23), 2345 (2007). 

¡§Controlled synthesis of Bi2O3 nanowires by a metal-vapor-transport-oxidative- deposition technique¡¨, Adv. Mater. 18, 2604 (2006).

¡§Hollow and Sn-filled Nanotubes of Single-Crystalline In(OH)3 Grown by a Solution-Liquid-Solid-Solid Route¡¨, Angew. Chem., Int. Ed. 118, 4771 (2006). 

¡§Synthesis of Ultrathin Zinc Nanowires and Nanotubes by Vapor Transport¡¨, Angew. Chem., Int. Ed. 44, 3562 (2005).

¡§Controlled Growth of Large-Area, Uniform, Vertically Aligned Arrays of a-Fe2O3 Nanobelts and Nanowires¡¨, J. Phys. Chem. B 109, 215 (2005).

¡§Cu2S/Au core/sheath nanowires prepared by a simple redox deposition method¡¨, Nano Lett. 2, 451-454 (2002).

(2)    Carbon cage molecules and their internal/external chemistry. Fullerenes are unique in molecular science in that they support rich endohedral and exohedral chemistry, many of which are yet to be discovered. This uniqueness is gaining increasing significance after recognizing the ability of fullerenes to effectively relay electrons. We apply and discover synthetic strategies to understand and take advantage of the rich chemistry of fullerenes to design and build artificial systems for efficient energy conversion and signal transduction.


¡§Observations of chemical reactions at the atomic scale: dynamics of metal-mediated fullerene coalescence and nanotube rupture¡¨, Angew. Chem., Int. Ed. 49, 193-196 (2010).  

¡§A New Confinement Method for the Formation of Highly Aligned and Densely Packed Single-Walled Carbon Nanotube Monolayers Intensity¡¨, Small 6, 1488-1491 (2010).   
¡§Studies of Dipalmitoylphosphatidylcholine (DPPC) Monolayers Embedded with Endohedral Metallofullerene (Dy@C82)¡¨, Langmuir 25, 12968-12973 (2009).  

¡§Synthesis and Characterization of a Grapevine Nanostructure Consisting of Single-Walled Carbon Nanotubes with Covalently Attached [60]Fullerene Balls¡¨, Chem. Eur. J. 14, 5981 (2008). 

¡§Detecting atomically site-specific mechanical responses from individual metallofullerene molecules confined inside carbon nanotubes¡¨, Nature Nanotech. 3, 337 (2008). 

¡§Chemical Conjugation of Fullerene C60 to CdSe Nanocrystals via Dithiocarbamate Ligands¡¨J. Phys. Chem. C 111, 17713 (2007).     

¡§Synthesis of a Dy@C82 Derivative Bearing a Single Phosphorus Substituent via a Zwitterion Approach¡¨, J. Am. Chem. Soc. 129, 10636 (2007). 

¡§Significantly accelerated direct electron transfer kinetics of hemoglobin in a C60-MWCNT nanocomposite film¡¨, Chem. Eur. J. 12, 7161 (2006). 

¡§Langmuir-Blodgett Films of Poly(3-hexylthiophene) Doped with the Endohedral Metallofullerene Dy@C82: Preparation, Characterization, and Application in Photoelectrochemical Cells¡¨, J. Phys. Chem. B 108, 4394 (2004).

¡§Experimental evidence for the photoisomerization of higher fullerenes¡¨, J. Am. Chem. Soc. 124, 12400 (2002).

¡§Preparation and film formation behavior of the supramolecular complex of the endohedral metallofullerene Dy@C82 with Calix[8]arene¡¨, Langmuir 18, 8488 (2002).

¡§Magnetic properties of heavy rare-earth metallofullerenes M@C82 (M = Gd, Tb, Dy, Ho and Er)¡¨, J. Phys. Chem. B 104, 1473 (2000).

(3)    Energy generation and storage. The high surface to volume ratio and the tunable size effects of the unique nanostructures we are developing, together with the ability to assemble and surface functionalize the nanostructures, provide golden opportunities for designing the next generation solar cells and rechargeable lithium ion batteries with low cost, high efficiency, high stability and green impacts. In particular, we engineer hierarchical nano-architectures with suitable energy landscapes to enhance light harvest and to increase charge separation and transport. 



¡§Double-layered Photoanodes from Size-Varied Anatase TiO2 Nanospindles: A Promising Candidate for High Efficiency Dye-Sensitized Solar Cells¡¨, Angew. Chem., Int. Ed. 49, 3675-3679 (2010).  

¡§High Efficiency Dye Sensitized Solar Cells Based On the Composite Photoanodes of SnO2 Nanoparticles/ZnO anotetrapods¡¨, J. Phys. Chem. A 114, 3127-3138 (2010). 

¡§Facile Hydrothermal Preparation of Hierarchically Assembled, Porous Single-Crystalline ZnO Nanoplates and Their Application in Dye-Sensitized Solar Cells¡¨, J. Mater. Chem. 20, 1001-1006 (2010).  

¡§A New ZnO Nanotetrapods/SnO2 Nanoparticles Composite Photoanode for High Efficiency Flexible Dye¡Vsensitized Solar Cells¡¨, Phys. Chem. Chem. Phys. 12, 9494-9501 (2010). 

¡§Hybrid solar cells based on blends of poly(3-hexylthiophene) and surface dye-modified, ultrathin linear-and branched-TiO2 nanorods¡¨, Solar Energy Materials and Solar Cells 94, 501-508 (2010).  
¡§A Novel Nanostructured Spinel ZnCo2O4 Electrode Material: Morphology Conserved Transformation from a Hexagonal Shaped Nanodisk Precursor and Application in Lithium Ion Batteries¡¨, J. Mater. Chem. 20, 4439-4444 (2010).  

¡§A New Photoanode Architecture of Dye Sensitized Solar Cell Based on ZnO Nanotetrapods with No Need for Calcination¡¨, Electrochemistry Communications 11, 1057 (2009).

¡§Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells¡¨, Mater. Chem. Phys. 93, 35-40 (2005).

(4)    Soft molecular interfaces. Studies of interfacial properties involving many-body weak molecular interactions help to understand diverse, emergent phenomenon such as protein folding, nonspecific/specific interactions, etc. We develop and apply imaging and electromechanical techniques to probe interfacial assembly and conformational transitions of polymers, lipids, and peptides/proteins.  




¡§Biomimetic Mineralization of CaCO3 on a Phospholipid Monolayer: From Amorphous Calcium Carbonate Precursor to Calcite via Vaterites¡¨, Langmuir 26, 4977-4983 (2010).  

¡§Observation of Amorphous Calcium Carbonate Precursor on Stearic Acid Monolayer Formed during the Biomimetic Mineralization of CaCO3¡¨, Langmuir 25, 1054 (2009). 

¡§Effects of Fullerenes on Phospholipid Membranes: A Langmuir Monolayer Study¡¨, ChemPhysChem 10, 2284-2289 (2009).       

¡§Studies of Phospholipid Vesicle Deposition/Transformation on a Polymer Surface by Dissipative Quartz Crystal Microbalance and Atomic Force Microscopy¡¨, J. Phys. Chem. B 113, 14925-14933 (2009). 

¡§Adsorption behaviors of DPPC/MO aggregates on SiO2 surface¡¨, Langmuir 24, 11616 (2008). 

¡§Protein Resistance of (Ethylene Oxide)n Monolayers at the Air/Water Interface: Effects of Packing Density and Chain Length¡¨, Phys. Chem. Chem. Phys. 9, 6073 (2007). 

¡§Insight into the Origin of Thermosensitivity of PDEM¡¨, ChemPhysChem 8, 2254 (2007).

¡§Conformational Changes of Poly(N-isopropylacrylamide) Chains at Air/Water Interface: Effects of Temperature, Compression Rate and Packing Density¡¨J. Phys. Chem. B 111, 3633 (2007).